Management of High Blood Pressure in African Americans

Consensus Statement of the Hypertension in African Americans Working Group of the International Society on Hypertension in Blacks

Janice G. Douglas, MD; George L. Bakris, MD; Murray Epstein, MD; Keith C. Ferdinand, MD; Carlos Ferrario, MD; John M. Flack, MD, MPH; Kenneth A. Jamerson, MD; Wendell E. Jones, MD; Julian Haywood, MD; Randall Maxey, MD; Elizabeth O. Ofili, MD; Elijah Saunders, MD; Ernesto L. Schiffrin, MD, PhD; Domenic A. Sica, MD; James R. Sowers, MD; Donald G. Vidi, MD; the Hypertension in African Americans Working Group

The purpose of this consensus statement is to offer primary care providers (including physicians, nurse practitioners, and physician assistants) a practical, evidence-based clinical tool for achieving blood pressure goals in African American patients. The need for specific recommendations for African Americans is highlighted by compelling evidence of a higher prevalence of hypertension and poorer cardiovascular and renal outcomes in this group than in white Americans. African Americans have disturbingly higher rates of cardiovascular mortality, stroke, hypertension-related heart disease, congestive heart failure, type 2 diabetes mellitus, hypertensive nephropathy, and end-stage renal disease (ESRD).1,2

Large population-based studies have demonstrated that as diastolic blood pressure (DBP) and systolic blood pressure (SBP) increase, the risk of cardiovascular events and renal failure also increases continuously.3-6 Remarkably, this is true even for individuals with normal blood pressure. Framingham Heart Study investigators7 recently reported that for individuals who had blood pressure lower than 140/90 mm Hg at study entry, only 5% of those with optimal blood pressure (<120/80 mm Hg) developed high blood pressure over the next 4 years, compared with 18% of those with normal blood pressure (120-129/80-84 mm Hg) and 37% of those with high-normal blood pressure (130-139/85-89 mm Hg). Early identification of high-normal blood pressure is especially relevant to African Americans. Studies have also shown that African American children, girls in particular, have significantly higher blood pressure than do age-matched white children, starting before age 10 years.8-10 An earlier onset of elevated blood pressure undoubtedly makes a substantial contribution to higher rates of cardiovascular and kidney disease and decreased life expectancy in African Americans than in white Americans.11

For editorial comment see page 521

The goal of management of high blood pressure is to assist patients to achieve and maintain a blood pressure that will optimally reduce cardiovascular and renal morbidity and mortality. Barriers to normalizing blood pressure in African Americans have been largely attributed to biologic and social factors, with an inadequate focus on the role of medical management. Undiagnosed, untreated, and inadequately treated hypertension results in an enormous burden of disease for African Americans. Simply stated, a key obstacle is the failure of medical providers to treat high blood pressure early and to
continue treating it persistently to reach and maintain an appropriate target blood pressure. This may be related to a common perception that it is medically more difficult to lower blood pressure in African Americans than in other patients. This perception is unjustified. Furthermore, it may lower providers’ outcome expectancy for African Americans and thwart their efforts to appropriately manage high blood pressure in these patients.

The recommendations in this article are based on evidence from clinical trials, a synthesis of existing guidelines, current pharmacologic options, and the consensus of the expert opinions of the members of the Hypertension in African Americans Working Group (HAAW Group). In preparation, we evaluated data from clinical trials that have enrolled significant numbers of African Americans, including the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT), in which 36% of subjects were African American, and the African American Study of Kidney Disease and Hypertension (AASK). A listing of guidelines and scientific statements that were reviewed for their relevance to African Americans are given in a box at the end of this article. In particular, we considered the relevance of 2 major hypertension guidelines to the management of high blood pressure in African Americans: the “Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC VI)” and the “1999 World Health Organization–International Society of Hypertension (WHO-ISH) Guidelines for the Management of Hypertension.”

The recommendations in the present consensus statement differ from these other guidelines in 2 substantial ways. First, we recommend lower blood pressure goals for patients with diabetes or with nondiabetic renal disease accompanied by proteinuria characterized by more than 1 g/d (≤130/80 mm Hg). Second, we recommend the use of combination therapy as first-line therapy for patients with an SBP of 15 mm Hg or more or a DBP of 10 mm Hg or more above target blood pressure.

GENERAL APPROACH

This article describes “best practice” strategies for assessing cardiovascular risk; setting, achieving, and maintaining appropriate blood pressure levels; assisting patients to implement therapeutic lifestyle changes; and initiating effective pharmacologic interventions early and persistently in nonpregnant African American adults with high blood pressure. The recommendations in this article represent a consensus of the opinions of members of the HAAW Group and are based on data within the public domain.

Identifying an optimal management plan for each patient is the key element for successful blood pressure reduction. In the past decade, there have been 3 major paradigm shifts in treating high blood pressure that are particularly applicable to the management of hypertension in African Americans: (1) urging and supporting therapeutic lifestyle changes; (2) conducting a thorough cardiovascular risk assessment; and (3) achieving and maintaining a target blood pressure that is determined by the individual’s level of risk. In addition, there is presently a more intense emphasis on lowering SBP than previously, particularly in older adults, and increased use of low-dose combination therapy to achieve target blood pressure goals. Furthermore, there is an increasing amount of data showing that appropriate agent selection is an important factor in providing target-organ protection.

The importance of treating high blood pressure persistently to reach and maintain an appropriate target pressure in African Americans cannot be overstated. To succeed, primary care providers will need to heighten their awareness of cardiovascular risk, recognize early markers of target-organ disease, and set blood pressure goals that are related to the individual’s risk profile. Success is generally the result of appropriate interventions, including therapeutic lifestyle changes and drug treatment, while failure often indicates an approach that was not sufficiently intense and persistent. Success also depends on creating a therapeutic alliance between provider and patient; to this end, providers must possess the ability to recognize and alleviate patient- and provider-related barriers as well as economic and social barriers to controlling high blood pressure in African American patients.

RISK ASSESSMENT

Cardiovascular risk assessment is used to identify high-risk patients who need immediate, intense medical intervention. Risk factors for developing high blood pressure, coronary heart disease (CHD), and cardiovascular disease should be identified in African Americans across the life span in all primary care settings. High blood pressure is an independent risk factor for adverse cardiovascular and renal outcomes; thus, African Americans of all ages should be educated about prevalent behaviors that increase the risk of developing high blood pressure, including smoking, obesity, inactivity, high dietary fat and sodium, low dietary potassium, and moderate or high alcohol intake. Because increased risk for cardiovascular events begins early in life, clinical markers associated with hypertension that are known to be prevalent in African Americans—such as low birth weight and a strong family history for cardiovascular disease, diabetes, and premature heart disease—should be recognized as an important part of the entire clinical picture.

A cardiovascular risk assessment is conducted by evaluating the patient’s medical history, family history, and health-related behaviors, along with clinical information obtained from the physical examination and laboratory studies. Elements of the adult risk assessment are outlined in Table 1. Analysis of data from the Framingham Heart Study has made it possible to predict the likelihood of a CHD event occurring in an individual who currently does not have CHD. A simple tool based on data from the Framingham Heart Study can be used to assess the relative importance of CHD risk factors and to estimate a risk

©2003 American Medical Association. All rights reserved.
level for these individuals.28 This tool was recently validated for African American men and women.29

The major risk factors for CHD are cigarette smoking, elevated blood pressure (whether treated or untreated), elevated serum total cholesterol and low-density lipoprotein cholesterol levels, low serum high-density lipoprotein cholesterol level, diabetes, and advancing age.1,15-28 Obesity and inactivity, which are known to worsen the impact of other major risk factors, have also been designated as major risk factors for CHD by the American Heart Association.30,31 African Americans have a high prevalence of obesity and inactivity, both of which should be viewed as major risk factors in this population. It is also relevant to assess the risk for other adverse cardiovascular and renal outcomes in African Americans, particularly stroke and hypertensive nephropathy. Additional risk factors for cardiovascular disease include pre-existing cardiovascular or kidney disease, history of a cardiovascular event, central obesity, blood pressure above the appropriate target level, elevated blood glucose level, male sex, postmenopausal status, family history of cardiovascular disease in women younger than 65 years or men younger than 55 years, evidence of target-organ damage, low socioeconomic status, and elevated triglyceride levels1-15,32 (Table 2).

Microalbuminuria (urinary albumin excretion of 30-299 mg/d), even in the nondiabetic, nonhypertensive population, has been shown to be an independent risk factor for cardiovascular and renal disease.33,34 Therefore, assessment for microalbuminuria should be conducted in patients with diabetes mellitus (type 1 or type 2), longstanding hypertension (controlled or uncontrolled), or renal insufficiency (hypertensive nephropathy), and may also be useful for risk assessment in patients with significant cardiovascular risk factors35 (Table 2). Screening for microalbuminuria can be performed most efficiently using a random, spot-collection urine sample for measurement of albumin-creatinine ratio.37

Many individuals have a cluster of major risk factors that are referred to as the metabolic syndrome. The clinical characteristics of this syndrome are listed in Table 3. A defining characteristic of the metabolic syndrome is insulin resistance, usually associated with increased insulin levels and dyslipidemia. Epidemiologic data from the Third National Health and Nutrition Examination Survey (NHANES III) and reported by the American Heart Association7 show that predisposing factors for the metabolic syndrome and cardiovascular risk—including type 2 diabetes mellitus, obesity, and inactivity—are more prevalent in African Americans than in whites. Thus, providers should assess patients for clinical signs of the metabolic syndrome when appropriate.

Regardless of the clinical tools used to identify a patient’s relative level of cardiovascular risk, labeling a patient as high risk is of no value if appropriate interventions are not immediately initiated and persistently continued. The clinical tasks of the provider that follow cardiovascular risk assessment are to (1) determine the appropriate blood pressure goal; (2) assist the patient to achieve therapeutic lifestyle changes; (3) determine the appropriate intensity of pharmacologic intervention; and (4) select the most appropriate therapeutic regimen. In addition to identifying, achieving, and maintaining an appropriate blood pressure goal, interventions should be initiated for all modifiable risk factors and associated clinical conditions that are identified through risk assessment.

SETTING BLOOD PRESSURE GOALS

The larger the burden of risk, the more imperative it is to reach blood pressure goals. For patients at high risk for cardiovascular events—in particular, those with type 2 diabetes mellitus (with or without nephropathy) or with nondiabetic renal disease with proteinuria
Table 2. Major Cardiovascular Risk Factors in African Americans

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal or central obesity</td>
<td>Waist circumference >40 in (>102 cm) for men or >35 in (>89 cm) for women</td>
</tr>
<tr>
<td>Atherogenic dyslipidemia</td>
<td>Elevated triglyceride levels (≥150 mg/dL [≥1.70 mmol/L]) or <40 mg/dL (<1.04 mmol/L) for men or <50 mg/dL (<1.30 mmol/L) for women</td>
</tr>
<tr>
<td>Low HDL-C level</td>
<td>Elevated blood glucose level (≥130/85 mm Hg)</td>
</tr>
<tr>
<td>High blood pressure</td>
<td>Elevated fasting blood glucose level (≥110 mg/dL [≥6.1 mmol/L])</td>
</tr>
</tbody>
</table>

Table 3. Characteristic Findings Related to the Metabolic Syndrome

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal or central obesity</td>
<td>Waist circumference >40 in (>102 cm) for men or >35 in (>89 cm) for women</td>
</tr>
<tr>
<td>Atherogenic dyslipidemia</td>
<td>Elevated triglyceride levels (≥150 mg/dL [≥1.70 mmol/L]) or <40 mg/dL (<1.04 mmol/L) for men or <50 mg/dL (<1.30 mmol/L) for women</td>
</tr>
<tr>
<td>Low HDL-C level</td>
<td>Elevated blood glucose level (≥130/85 mm Hg)</td>
</tr>
<tr>
<td>High blood pressure</td>
<td>Elevated fasting blood glucose level (≥110 mg/dL [≥6.1 mmol/L])</td>
</tr>
</tbody>
</table>

Abbreviations: HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; LVH, left ventricular hypertrophy; MI, myocardial infarction; TIA, transient ischemic attack.

characterized by more than 1 g/d—
the blood pressure target should be
lower than 130/80 mm Hg.

Because the relationship be-
tween increasing blood pressure and
cardiovascular events is continu-
ous, the degree of blood pressure el-
evation (treated or untreated) over
the target goal is a critical element
of individual risk assessment. While
hypertension is currently defined as
achieve a target SBP of lower than
140 mm Hg and DBP of lower than
90 mm Hg. Patients with uncompli-
cated hypertension are those who do
not have diabetes or evidence of tar-
get-organ damage, who have no his-
tory of a cardiovascular event, and
who are at low or moderate risk for
CHD. It is important to lower both
SBP and DBP to the target goals.
Achieving one component of the
blood pressure goal without achieving
the other (eg, reducing blood
pressure from 180/90 mm Hg to
150/80 mm Hg) does not offer pa-
ients adequate protection.

Compelling evidence demonstrates
that maintaining lower blood
pressure reduces cardiovascular
morbidity and mortality and slows
the progression of renal disease for
patients with diabetes or renal in-
sufficiency. While JNC VI recom-

mends a target blood pressure
group of less than 130/85 mm Hg for
all patients with diabetes and pa-

tients with nondiabetic renal dis-

ease with proteinuria characterized
by more than 1 g/d, some data sug-

gest that even lower blood pressure
goals may be desirable. A report
developed by the National Kidney
Foundation Hypertension and Dia-

betes Executive Committees Work-
ing Group recommends a target
goal of lower than 130/80 mm Hg for
all patients with diabetes and pa-
tients with nondiabetic renal dis-

ease with proteinuria characterized
by more than 1 g/d, re-
gardless of etiology.

In January 2002, a position
statement issued by the American
Diabetes Association regarding

treatment of hypertension in adults
with diabetes recommended a tar-
get blood pressure of lower than
130/80 mm Hg for all patients with
diabetes. The present recom-

nendation of the HAAW Group to lower
the DBP goal to lower than 80 mm Hg in
African Americans with diabetes
was based on an evaluation of ran-
domized clinical trials, including
several large trials that have been
published subsequent to publica-
tion of the JNC VI and WHO-ISH
guidelines and 2 small studies (N=86) that included Af-

can American patients with dia-

Abbreviation: HDL-C, high-density lipoprotein cholesterol.
*Diagnosis of the metabolic syndrome is made when the patient exhibits 3 or more risk factors.20

©2003 American Medical Association. All rights reserved.
abetic nephropathy. One of these small studies enrolled solely African American patients, and the other enrolled 24% African American patients. Schrier and colleagues recently reported a lower rate of stroke and less progression of albuminuria and diabetic retinopathy in patients with type 2 diabetes mellitus who achieved and maintained a mean blood pressure of 128/75 mm Hg during a mean follow-up period of 5.3 years.

Blood pressure reduction has been shown to slow the progression of renal disease, which is particularly important for African Americans, who are 3 to 4 times more likely to develop ESRD than white Americans. A meta-analysis of long-term clinical trials demonstrated that increasing preservation of renal function is associated with decreasing blood pressure over a continuum of values. However, data from AASK, which enrolled nearly 1094 non(diabetic African American patients with hypertensive renal disease, showed no significant difference in the progression of renal disease between the group of patients assigned to the usual blood pressure goal (mean achieved blood pressure, 140/85 mm Hg) and the group assigned to a lower blood pressure goal (mean achieved blood pressure, 127/77 mm Hg). Because of this, we recommend a blood pressure of lower than 140/90 mm Hg for non(diabetic patients with hypertensive renal disease accompanied by proteinuria characterized by less than 1 g/d. There were too few participants in AASK with proteinuria characterized by more than 1 g/d to make a blood pressure recommendation for this group. Therefore, based on current recommendations for patients with non(diabetic renal disease and proteinuria characterized by more than 1 g/d, we recommend a blood pressure target that is lower than 130/80 mm Hg. A blood pressure target that is set lower than 140/90 mm Hg (eg, <130/80 mm Hg) may also be preferred for patients with a history of a cardiovascular event, stroke, or transient ischemic attacks, evidence of target-organ damage, including microalbuminuria or CHD or high risk for CHD.

THERAPEUTIC LIFESTYLE CHANGES

It is vital that providers assume the important responsibility of offering ongoing education and support for individuals and families in their efforts to lead healthier lives in the areas of diet, physical activity, smoking, and alcohol use. Weight maintenance or reduction, increased physical activity, moderation of salt and alcohol intake, and tobacco avoidance are important therapeutic lifestyle changes that can lower blood pressure. (Changing health behaviors is not an easy task, and patients deserve ongoing education and support from primary care providers in their efforts. Without an adequate understanding of the causes and consequences of elevated blood pressure, patients are less likely to embark on lifelong lifestyle changes or comply with long-term pharmacologic therapy. Patients should be informed that the risks of untreated hypertension include irreparable damage to any or all of the target organs—heart, blood vessels, brain, kidneys, and eyes.

Because obesity, high sodium and low potassium intake, and inadequate physical activity have been identified as particular obstacles to cardiovascular health in African Americans, it is appropriate to emphasize their importance. However, a healthy diet is more important than weight loss, and enjoyable physical activity is beneficial even if it is not strenuous or associated with weight loss. Plans for diet, exercise, and other needed changes should be initiated in the primary care setting; realistic, appropriate goals should be established. Recommendations should be specific, individually tailored, and well supported with counseling efforts and effective patient education materials (Table 5).

Dietary Goals

There are several potential nutritional variables that may contribute to lowering blood pressure—weight loss, reduced dietary fats and sodium, increased potassium intake, increased dietary fiber, and reduction of alcohol intake, among others. However, only those dietary changes that individuals and their families can safely and readily follow over a lifetime will actually produce health benefits. The emphasis should be on healthy choices, not dietary restrictions.

Dietary Approaches to Stop Hypertension (DASH) is a randomized, controlled dietary study that compares the effect on blood pressure of the DASH diet (rich in fruits, vegetables, fiber, and low-fat dairy foods; includes meat and poultry, but with reduced saturated and total fats) with a typical, high-fat, control diet (that was either high or low in fruits and vegetables) in 459 adults with normal or elevated blood pressure. After 8 weeks, the DASH diet reduced SBP and DBP significantly more than the other diets, without any weight loss or sodium restriction. Importantly, the DASH diet was particularly beneficial in African American participants and in all participants.

Table 4. Classification of Blood Pressure Stages for Adults 18 Years and Older

<table>
<thead>
<tr>
<th>Category</th>
<th>Systolic Blood Pressure, mm Hg</th>
<th>Diastolic Blood Pressure, mm Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal</td>
<td><120</td>
<td><80</td>
</tr>
<tr>
<td>Normal</td>
<td><130</td>
<td><85</td>
</tr>
<tr>
<td>High-normal</td>
<td>130-139</td>
<td>85-89</td>
</tr>
<tr>
<td>Stage 1 hypertension</td>
<td>140-159</td>
<td>90-99</td>
</tr>
<tr>
<td>Stage 2 hypertension</td>
<td>160-179</td>
<td>100-109</td>
</tr>
<tr>
<td>Stage 3 hypertension</td>
<td>≥180</td>
<td>≥110</td>
</tr>
<tr>
<td>Isolated systolic hypertension†</td>
<td>≥140</td>
<td><90</td>
</tr>
</tbody>
</table>

Classification is based on blood pressure values without antihypertensive therapy. When systolic and diastolic blood pressures fall into different categories, the higher category should be selected to classify blood pressure status. A diagnosis of hypertension should be based on an average of 2 or more measurements taken during each of 3 or more visits.

†Isolated systolic hypertension can be categorized according to stages 1 to 3, based on degree of systolic blood pressure and diastolic blood pressure less than 90 mm Hg.
with hypertension, but it was most effective in African Americans with high blood pressure. Among all participants with hypertension (n = 133), the DASH diet reduced SBP and DBP by 11.6 mm Hg and 5.3 mm Hg, respectively, and among African American participants with hypertension (n = 88), the DASH diet reduced SBP and DBP by 13.2 mm Hg and 6.1 mm Hg, respectively. The DASH diet plus sodium restriction was also studied and was found to be associated with additional lowering of blood pressure, an effect that was also more pronounced in African American patients than in others. It is important to note that this diet, which was based on typically available foods, reduced blood pressure in patients with stage 1 hypertension by about as much as a typical antihypertensive agent. The DASH diet is a heart-healthy program from which all Americans could benefit. Providers should strongly recommend the low-sodium DASH diet to all African American patients, with or without high blood pressure, and provide educational materials, which are readily available. Patients following the DASH diet, which is based on an intake of 2000 calories a day, maintained a constant body weight; however, the number of calories in the diet can be reduced for overweight individuals. The diet is described in Table 6.

In all populations, including African American populations, there appears to be a positive association between sodium excretion and blood pressure. Similar to white Americans, salt sensitivity in African Americans has been linked to obesity. However, it has been hypothesized that African Americans may be more salt sensitive and consume less potassium than white Americans. Thus, increasing dietary potassium while moderating sodium chloride intake to the recommended less than 2.4-g/d level is likely to be beneficial in African Americans with hypertension (but without renal failure). For motivated patients who desire greater dietary effects on lowering blood pressure, weight reduction or further sodium reduction is likely to produce further blood pressure lowering. Data from phase 2 of the randomized Trials of Hypertension Prevention (TOHP II) demonstrated that clinically significant long-term reductions in blood pressure and reduced risk for hypertension can be achieved with a modest weight loss of about 10 pounds (4.5 kg).

Physical Activity Goals

Regular physical activity helps control weight, reduces the risk of developing high blood pressure or diabetes, reduces the likelihood of dying prematurely from heart disease, and reduces feelings of depression. Individualized, realistic plans should be suggested, including taking a walk every day or dancing or moving to music at home. High-intensity and moderate-intensity energy-expending activities such as brisk walking, bicycling, jogging, swimming and sports such as tennis, baseball, and basketball are especially beneficial when performed regularly. Low-intensity activities are possible for almost everyone and also confer long-term health benefits similar to those associated with higher-intensity activities, if the duration of activity is increased. Low-intensity activities include walking, walking a dog, golf, gardening, yard work, housework, yoga, tai chi, stretching, chair exercise, water exercise, and prescribed home exercise adapted to the individual.

Other “Heart Healthy” Interventions

Smoking cessation should be strongly encouraged and supplemented with support, education, and medical interventions as needed. Cholesterol-lowering therapy, including dietary modifications and

Table 5. Therapeutic Lifestyle Changes

<table>
<thead>
<tr>
<th>Medical Target</th>
<th>Realistic Personal Plan to Achieve Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal weight for height</td>
<td>Lose weight gradually by making permanent changes in daily diet for the entire family. Set a reasonable weight loss goal (even 5-10 lb [2.2-4.5 kg] can make a difference). Eat fewer fast food and fried foods, and eat more fruits and vegetables.</td>
</tr>
<tr>
<td>Dietary goals: Low fat</td>
<td>Eat more grains, fresh fruits, and vegetables. Eat fewer overall fats and use healthier fats, such as olive oil. Eat fewer processed foods and fast foods.</td>
</tr>
<tr>
<td>Low sodium</td>
<td>Identify high-sodium foods (eg, potato chips or hot dogs) that can be comfortably omitted. Identify low-sodium, high-potassium snacks (eg, dried fruits, bananas, orange juice, raw vegetables). Do not salt foods when cooking; instead, taste foods first and add salt at the table if needed. Use vinegar or lemon juice instead of salt for seasoning. Do not season foods with smoked meats, such as bacon or ham hocks. Become more aware of food sources that are rich in calcium.</td>
</tr>
<tr>
<td>Adequate potassium</td>
<td>If lactose intolerant, try lactose-free milk or yogurt, or drink calcium-fortified juices or soy milk. Become more aware of food sources that are rich in calcium. Use vinegar or lemon juice instead of salt for seasoning. Do not season foods with smoked meats, such as bacon or ham hocks. Become more aware of food sources that are rich in calcium.</td>
</tr>
<tr>
<td>Limit alcohol</td>
<td>Men: no more than 2 beers, 1 glass of wine, or 1 shot of whiskey (or hard liquor) per day. Women: no more than 1 beer or 1 glass of wine per day (a shot of whiskey exceeds these recommendations).</td>
</tr>
<tr>
<td>Physical fitness</td>
<td>Increase physical activity as part of the daily routine; eg, if currently sedentary, get off the bus 6 blocks from home, or walk in the evening with a spouse or friend.</td>
</tr>
<tr>
<td>No tobacco use</td>
<td>For nonsmokers, do not start. For current smokers, attempt smoking cessation, increase tolerance for failure, and be willing to continue the effort until success is achieved. Be aware that smokeless tobacco products (eg, chewing tobacco) also have associated risks.</td>
</tr>
</tbody>
</table>
lipid-lowering therapy, should be prescribed, based on recent guidelines and cholesterol target goals published by the National Cholesterol Education Program32 (Table 7).

There is evidence that the rate of bystander-initiated cardiopulmonary resuscitation (CPR), as well as the rate of survival after out-of-hospital sudden cardiac arrest, is significantly lower among African Americans than among whites.70 Patients should be encouraged to learn CPR. They should also be educated in the benefits of aspirin therapy for acute myocardial infarction (MI). Daily aspirin therapy inhibits platelet aggregation and can reduce the risks of heart attack and stroke in a wide range of patients with cardiovascular disease. Therefore, unless contraindicated, patients with CHD or at high risk for CHD should be prescribed daily aspirin therapy (75-325 mg/d).71

PHARMACOLOGIC INTERVENTIONS

To reach appropriate blood pressure goals, most individuals will likely require combination antihypertensive therapy. The rationale for lowering blood pressure to a specified goal is to protect target organs from hypertension-related damage and to reduce cardiovascular morbidity and mortality. As noted, patients at higher clinical risk for cardiovascular events should have lower blood pressure goals than those with lower risk; however, there are no clinical trial data at present to suggest that lower-than-usual blood pressure targets should be set for high-risk demographic groups such as African Americans.

Large, randomized clinical trials33,40,72-77 have demonstrated that 2 to 4 antihypertensive agents are required to achieve DBP and SBP goals in adults with uncomplicated hypertension. Clinical trial data also

Table 6. The DASH Diet*

<table>
<thead>
<tr>
<th>Food Group</th>
<th>Daily Servings (Except as Noted)</th>
<th>Serving Sizes</th>
<th>Examples for a Typical African American Diet</th>
<th>Significance of Each Food Group to the DASH Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grains and grain products</td>
<td>7-8</td>
<td>1 slice bread</td>
<td>Bread, biscuit, cornbread, cereals, oatmeal, grits, rice, pasta, crackers, unsalted pretzels</td>
<td>Major sources of energy and fiber</td>
</tr>
<tr>
<td>Vegetables</td>
<td>4-5</td>
<td>1 c raw leafy vegetable</td>
<td>Fresh, canned or frozen vegetables: tomatoes, corn, potatoes, greens (eg, collards, kale, turnip greens, spinach), yams, squash, carrots, okra</td>
<td>Rich sources of potassium, magnesium, and fiber</td>
</tr>
<tr>
<td>Fruits</td>
<td>4-5</td>
<td>1 medium-size fruit</td>
<td>Bananas, grapes, apples, oranges, unsweetened fruit juices, grapefruit, mangoes, melons, peaches, dried fruits</td>
<td>Important sources of potassium, magnesium, and fiber</td>
</tr>
<tr>
<td>Low-fat or fat-free dairy foods</td>
<td>2-3</td>
<td>8 oz (240 mL) milk</td>
<td>Fat-free (skim) or low-fat (1%) milk, fat-free cheeses, low-fat yogurt, low-fat ice cream, or frozen yogurt</td>
<td>Major sources of calcium and protein</td>
</tr>
<tr>
<td>Lean meats, poultry, and fish</td>
<td>≤2</td>
<td>3 oz (84 g) cooked lean meats, poultry (remove skin), or fish Brol or roast, rather than fry</td>
<td>Chicken, turkey, ground turkey or chicken, chicken sausage, lean pork, or beef Fish and seafood: haddock, halibut, flounder, catfish, salmon, shrimp, crab, oysters, clams</td>
<td>Rich sources of protein and magnesium</td>
</tr>
<tr>
<td>Nuts, seeds, and beans</td>
<td>4-5 per week</td>
<td>1 c (0.08 L) or 1½ oz (42 g) nuts</td>
<td>Black beans, kidney beans, navy beans, pigeon peas, pinto beans, split peas, peanuts (roasted or boiled), almonds, pecans, walnuts, hazelnuts</td>
<td>Rich sources of energy, magnesium, potassium, protein, and fiber</td>
</tr>
<tr>
<td>Fats and oils†</td>
<td>2-3</td>
<td>1 tbsp (15 mL) or ½ c cooked dry beans</td>
<td>Margarine, low-fat mayonnaise, light salad dressing, vegetable oil (olive, corn, canola, or safflower)</td>
<td>Reduced fat from typical diet (>30% of total calories) to 27% of total calories</td>
</tr>
<tr>
<td>Sweets</td>
<td>5 per week</td>
<td>1 tbsp sugar, 1 tbsp jelly or jam, ½ oz jelly beans, 8 oz lemonade</td>
<td>Sugar, jelly, jam, honey, molasses, hard candy, fruit ices</td>
<td>Sweets should be those that are low in fat</td>
</tr>
</tbody>
</table>

*The Dietary Approaches to Stop Hypertension (DASH) dietary plan shown here is based on 2000 calories a day. The number of daily servings may vary according to the individual's daily caloric requirements.

†Serving size should be based on the product's nutrition label.

‡Fat content may change serving counts for fats and oils: eg, 1 tbsp of regular salad dressing equals 1 serving; 1 tbsp of a low-fat dressing equals one-half serving; 1 tbsp of a fat-free dressing equals 0 serving.
show that patients with diabetes or renal disease will require an average of 2.6 to 4.3 different antihypertensive medications to achieve a blood pressure goal of lower than 130/80 mm Hg.75 Similarly, in AASK,14,76-78 2 to 3 drugs were needed, on average, to reduce mean arterial blood pressure to lower than 92 to 107 mm Hg in African Americans with hypertension and mild- to-moderate renal dysfunction.

In a meta-analysis of controlled clinical trials,79 the mean change in DBP weighted by sample size for various commonly used antihypertensive agents ranged from 7.2 mm Hg to 12 mm Hg. Thus, it is reasonable to assume that a very large majority of patients with DBP values that are more than 10 mm Hg above the target goal will require additional therapy to achieve their goal.

Until recently, DBP was generally preferred as an outcome measure for efficacy when evaluating the blood pressure–lowering effects of antihypertensive agents. However, large observational epidemiologic studies (eg, the Framingham Heart Study80) have consistently indicated that SBP is a better predictor of cardiovascular events than DBP. Randomized, controlled trials have demonstrated that the association between SBP and the risk of CHD, stroke, increased left ventricular mass, and ESRD is continuous, graded, and independent81 and is typically stronger than the association of DBP with these same outcomes.82 A meta-analysis of pooled data from randomized controlled trials83 indicated that an average reduction of 12 mm Hg to 13 mm Hg in SBP over 4 years of follow-up was associated with a 21% reduction in CHD, a 37% reduction in stroke, a 25% reduction in total cardiovascular mortality, and a 13% reduction in all-cause mortality. In a meta-analysis of clinical trials in which the SBP-lowering efficacy of various diuretics as monotherapy was reported,84 SBP decreased by 13 and 18 mm Hg during treatment with low-dose and high-dose thiazide diuretics, respectively. Based on the importance of lowering SBP to a target goal and the likelihood that thiazide diuretics have efficacy similar to that of other classes of antihypertensive agents, it seems reasonable to assume that patients with SBP values that are more than 15 mm Hg above the target will require more than 1 agent to achieve their goal.

Therefore, we recommend that patients with an SBP that is 15 mm Hg or more above their target or a DBP that is 10 mm Hg or more above their target be treated with combination antihypertensive therapy. This means that patients whose appropriate blood pressure target is lower than 140/90 mm Hg and who have untreated blood pressure that is higher than 155/100 mm Hg, measured properly on 2 separate occasions, should be prescribed 2 drugs as their initial therapy. Patients whose appropriate blood pressure target is lower than 130/80 mm Hg and who have untreated blood pressure that is higher than 145/90 mm Hg should also be prescribed a regimen of combination therapy that includes at least 2 drugs (Figure).

Blood Pressure–Lowering Efficacy

When combination therapy using agents from 2 major drug classes is required to achieve blood pressure goals, based on data from randomized controlled clinical trials, the fol-

Table 7. NCEP ATP III Classification of Total Cholesterol, LDL-C, and HDL-C

<table>
<thead>
<tr>
<th>Value, mg/dL (mmol/L)</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cholesterol</td>
<td></td>
</tr>
<tr>
<td><200 (<5.18)</td>
<td>Desirable</td>
</tr>
<tr>
<td>200-239 (5.18-6.19)</td>
<td>Borderline high</td>
</tr>
<tr>
<td>≥240 (≥6.20)</td>
<td>High</td>
</tr>
<tr>
<td>LDL-C</td>
<td></td>
</tr>
<tr>
<td><100 (<2.59)</td>
<td>Optimal</td>
</tr>
<tr>
<td>100-129 (2.59-3.34)</td>
<td>Near or above optimal</td>
</tr>
<tr>
<td>130-159 (3.35-4.12)</td>
<td>Borderline high</td>
</tr>
<tr>
<td>160-189 (4.13-4.91)</td>
<td>High</td>
</tr>
<tr>
<td>≥190 (≥4.92)</td>
<td>Very high</td>
</tr>
<tr>
<td>HDL-C</td>
<td></td>
</tr>
<tr>
<td><40 (<1.04)</td>
<td>Low</td>
</tr>
<tr>
<td>≥60 (≥1.55)</td>
<td>High</td>
</tr>
</tbody>
</table>

Abbreviations: HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol, NCEP ATP III, National Cholesterol Education Program Adult Treatment Panel III.

©2003 American Medical Association. All rights reserved.
lowing combinations may be considered effective: β-blocker/diuretic, angiotensin-converting enzyme (ACE) inhibitor/diuretic, ACE inhibitor/calculator channel blocker (CCB), or angiotensin II receptor blocker (ARB)/diuretic. All antihypertensive drug classes are associated with blood pressure–lowering efficacy in African Americans.1,13 Thus, in terms of efficacy, there is no rationale for using race as a reason to avoid certain classes of agents in African American patients with high blood pressure.85-86 Patients whose blood pressure target is lower than 140/90 mm Hg and who have untreated blood pressure that is lower than 155/100 mm Hg may receive the recommended starting dose of an antihypertensive agent from any of the following major antihypertensive classes: diuretics, β-blockers, CCBs (dihydropyridine or non-dihydropyridine), and ACE inhibitors. The blood pressure–lowering efficacy of either chlorothalidone (a diuretic) or amlopidine (a dihydropyridine CCB) was recently confirmed to be superior to that of the ACE inhibitor lisinopril in African Americans.1,11 In many cases, a single drug will not achieve the desired blood pressure–lowering effect of 15 mm Hg for SBP and 10 mm Hg for DBP. In these cases, further efforts should be made to help patients reach the target blood pressure (Figure).

Centrally acting agents and direct vasodilators are not well suited for initial monotherapy because they produce annoying adverse effects in many patients.1,15 Based on data reported from ALLHAT,14 α-adrenergic blockers should not be used as first-line agents in patients at high risk for hypertension. Potential advantages and disadvantages of antihypertensive drug classes and considerations regarding their use in African American patients with high blood pressure are outlined in Table 8.

It has been well documented that, as monotherapy or in the absence of a diuretic, β-blockers, ACE inhibitors, and ARBs do not lower blood pressure to the same extent in African American patients that they do in white patients with hypertension.13,82,97-99 It has also been reported that, as monotherapy, thiazide diuretics and CCBs have greater blood pressure–lowering efficacy than do other drug classes in African Americans.99,100 However, studies reporting these types of data have certain common limitations: (1) they generally do not report SBP responses; (2) they generally reported response rates based on a reduction of 10 mm Hg or more from baseline DBP rather than achievement of target blood pressure; (3) individual agents cannot be used as a proxy for class effect; and (4) conclusions cannot be drawn regarding the best course of treatment for patients for whom antihypertensive treatment was not efficacious in these studies. Furthermore, high-dose diuretic therapy, frequently used in the past, is no longer recommended.15

While β-blockers, ACE inhibitors, and ARBs may not bring patients to a target blood pressure when prescribed as low-dose monotherapy,99,100 the addition of a low dose of a second agent (eg, a diuretic or a CCB) will typically provide sufficient additional blood pressure lowering to help patients reach their blood pressure goals.

African American patients with high blood pressure will frequently require at least 2 drugs to achieve blood pressure goals. Combining low doses of 2 antihypertensive medications yields additional blood pressure reductions of about 4 to 6 mm Hg in DBP and 8 to 11 mm Hg in SBP compared with the highest recommended dose of monotherapy.100,103-105 Thus, when a patient is unable to achieve the appropriate blood pressure goal with low-dose monotherapy, it is generally preferable to add a low dose of a second drug rather than increase the dose of the first because adding a second drug to the regimen may produce fewer adverse effects than increasing the dose of a single agent.110 Combination therapy with 2 drugs from the following list may be considered effective in lowering the patient’s blood pressure to target: β-blocker/diuretic;94 ACE inhibitor/diuretic;111 ACE inhibitor/CCB; or ARB/diuretic.101,106,112 Fixed-dose combination products are listed in Table 9.100

As an alternative, it is also acceptable to increase the dose of the initial monotherapy agent to achieve a blood pressure target, provided the patient tolerates the increased dose. There is no sound rationale for discontinuing treatment with a medication that has provided insufficient blood pressure–lowering effects with a low dose without causing adverse effects; however, if adverse effects are encountered with a low dose of the agent, the patient’s treatment can be switched to an agent from another class. When titrating monotherapy, the clinician should give antihypertensive drugs adequate time to manifest their maximum blood pressure–lowering effect. Flack and colleagues86 showed improved blood pressure control and fewer adverse effects when the ACE inhibitor quinapril was titrated upward every 6 weeks as opposed to every 2 weeks in patients with mild hypertension.

If blood pressure goals are not achieved with combinations of 2 agents, the dosage of 1 agent can be increased or a third agent from a different class may be added to the regimen (Figure). The provider should consider any factors that may be decreasing patient compliance or reducing blood pressure–lowering efficacy. In particular, it is important to determine whether the patient’s sodium intake is excessive and to identify whether the patient is using any prescribed or nonprescribed agents, including over-the-counter medications (eg, decongestants or nonsteroidal anti-inflammatory drugs), herbal or supplementary products (eg, licorice), or illicit drugs (eg, cocaine, methamphetamine [speed] or methylenedioxyxymethamphetamine [Ecstasy]). Secondary causes of hypertension should always be considered in the overall evaluation of adherent patients who do not achieve blood pressure goals. A referral to a hypertension specialist may be considered for a patient whose blood pressure cannot be controlled with intensive efforts in the primary care setting with a combination of 3 agents.

Target-Organ Protection

Where compelling indications have been identified for prescribing renin-angiotensin system (RAS) blocking agents (either ACE inhibitors or ARBs) or β-blockers, these compel-
Table 8. Considerations Regarding the Use of Antihypertensive Classes in African American Patients With High Blood Pressure

<table>
<thead>
<tr>
<th>Class</th>
<th>Potential Disadvantages</th>
<th>Potential Benefits</th>
<th>Data Regarding Use in African Americans(^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diuretics(^1,13,15)</td>
<td>High doses should be avoided</td>
<td>Inexpensive and well tolerated</td>
<td>Efficacy for use in low-dose combination therapy well established for African Americans</td>
</tr>
<tr>
<td>Thiazide diuretics</td>
<td>Potential for erectile dysfunction</td>
<td>Efficacy and reduction of stroke</td>
<td>Chlorthalidone demonstrated cardiovascular benefits for African Americans in ALLHAT</td>
</tr>
<tr>
<td></td>
<td>Potential for hypokalemia, particularly if sodium is not restricted</td>
<td>Low-dose thiazide diuretics (eg, hydrochlorothiazide 12.5–25 mg/d) potentiate the blood pressure-lowering effects of other classes of agents, including ACE inhibitors, ARBs, and (\beta)-blockers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimal efficacy with decreasing GFR (eg, GFR < 45 mL/min per 1.73 m(^2))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium-sparing diuretics(^67)</td>
<td>Observe for hyperkalemia</td>
<td>Patients at risk of hypokalemia</td>
<td>Recent evidence for blood pressure-lowering efficacy with a selective aldosterone blocker (enalapril) in African Americans</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potential benefits in heart failure</td>
<td></td>
</tr>
<tr>
<td>Loop diuretics</td>
<td>Must be taken 2-3 times a day to control volume</td>
<td>Reserved for use in patients with renal insufficiency (serum creatinine > 2.0 mg/dL ([>177 \mu mol/L]) for men and ([>159 \mu mol/L]) for women))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risk of hypovolemia or hypokalemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Should not be used in patients with normal kidney function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta)-Blockers(^1,15,18,98,99)</td>
<td>Cautious use in patients with reactive airway diseases or depression</td>
<td>Indicated for post-MI</td>
<td>Evidence of benefits in African American patients post-MI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Evidence of less blood pressure-lowering efficacy as monotherapy in African American vs white patients</td>
</tr>
<tr>
<td>(\alpha)-Antagonists(^1,15,24)</td>
<td>No evidence for CV benefits</td>
<td>Indicated for benign prostatic hypertension</td>
<td>Negative data reported in ALLHAT for doxazosin in African American patients</td>
</tr>
<tr>
<td>CCBs(^1,15,25,47,89-92)</td>
<td>Risk for postural hypotension</td>
<td></td>
<td>Evidence of efficacy and benefits in African American patients well established</td>
</tr>
<tr>
<td></td>
<td>Contraindicated</td>
<td></td>
<td>Some evidence of renal benefits in African American patients</td>
</tr>
<tr>
<td>Dihydropyridine CCBs; potential for pedal edema, particularly at higher doses</td>
<td></td>
<td></td>
<td>AASK found that a dihydropyridine CCB (amlodipine) was less renoprotective than ACE inhibitors in African American patients with hypertensive renal insufficiency</td>
</tr>
<tr>
<td>Non-dihydropyridine CCBs; potential for conduction abnormalities, constipation; consider potential drug-drug interactions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACE inhibitors(^27,53,88,10,110,127,128)</td>
<td>Adverse effect of bothersome dry cough in some patients Angioedema (rare)</td>
<td>High tolerability</td>
<td>Strong evidence of target-organ protection in African American patients (AASK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indicated for prevention of CV events and for target-organ protection in patients with diabetes, heart failure, post-MI, diabetic nephropathy</td>
<td></td>
</tr>
<tr>
<td>ARBs(^20,23,98,94,95)</td>
<td>Newest class of agents, so fewer data on clinical outcomes</td>
<td>High tolerability Benefits shown for target-organ protection in patients with diabetic nephropathy or early renal insufficiency Evidence of benefits for patients with heart failure</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: AASK, African-American Study of Kidney Disease and Hypertension; ACE, angiotensin-converting enzyme; ALLHAT, Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial; ARB, angiotensin II receptor blocker; CCB, calcium channel blocker; CHF, coronary heart disease; CV, cardiovascular; GFR, glomerular filtration rate; ISH, isolated systolic hypertension; MI, myocardial infarction; RAS, renin-angiotensin system.

*Contrasts in efficacy for African Americans and white Americans should be viewed with caution, as they have not been established in randomized controlled trials.

Reducing blood pressure with medications has demonstrated protection against stroke, coronary events, heart failure, progression of...
of adverse cardiovascular and renal outcomes, and all-cause mortality.1 While lowering blood pressure to a target goal is the primary clinical approach to reduce the risk of adverse cardiovascular and renal events, some data also indicate greater benefits with specific classes of agents in high-risk patients. ALLHAT13,24 compared 4 antihypertensive agents as initial therapy in approximately 42,400 North American patients 55 years or older with hypertension and at least 1 other CHD risk factor; approximately 35\% of subjects were African American and approximately 36\% had type 2 diabetes mellitus (Table 10). In this trial, patients were randomly assigned to initial therapy with a diuretic (chlorthalidone), an ACE inhibitor (lisinopril), an \(\alpha \)-blocker (doxazosin), or a dihydropyridine CCB (amlodipine). An interim review by the data and safety monitoring board and an independent review panel determined that doxazosin-treated patients developed congestive heart failure at a greater rate than did diuretic-treated patients, and thus, the doxazosin arm was discontinued in 2000. Based on these data, it appears that \(\alpha \)-adrenergic blockers should not be used as first-line agents in high-risk patients.

Chlorthalidone, lisinopril, and amlodipine did not differ in preventing major coronary events, the primary outcome of the trial, or in their effect on overall survival. However, chlorthalidone was associated with significantly fewer combined cardiovascular disease events,

Table 9. Antihypertensive Therapy Combinations and Available Fixed-Dose Combinations

<table>
<thead>
<tr>
<th>Combination</th>
<th>Fixed-Dose Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE inhibitors and CCBs</td>
<td>Benazepril-amlodipine (Lotrel)</td>
</tr>
<tr>
<td>ACE inhibitors and diuretics</td>
<td>Benazepril-hydrochlorothiazide (Lotensin HCT)</td>
</tr>
<tr>
<td>ARBs and diuretics</td>
<td>Candesartan-hydrochlorothiazide (Atacand HCT)</td>
</tr>
<tr>
<td>(\beta)-Blockers and diuretics</td>
<td>Atenolol-chlorthalidone (Tenoretic)</td>
</tr>
</tbody>
</table>

Abbreviations: ACE, angiotensin-converting enzyme; ARB, angiotensin II receptor blocker; CCB, calcium channel blocker.

Table 10. ALLHAT and AASK at a Glance

<table>
<thead>
<tr>
<th>Design</th>
<th>Population</th>
<th>Drugs</th>
<th>Terminated Arm</th>
<th>Final Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLHAT*</td>
<td>N = 42,448 High-risk hypertensives aged (\geq 55) y 36% African American; 47% women; 36% diabetic</td>
<td>Chlorthalidone vs amlodipine or lisinopril or doxazosin</td>
<td>Doxazosin arm was terminated by the data and safety monitoring board because doxazosin-treated patients developed congestive heart failure at a greater rate than diuretic-treated patients†</td>
<td>Expected trial end data: 2002 Chlorthalidone, lisinopril, and amlodipine did not differ in preventing major coronary events‡ Chlorthalidone was superior to lisinopril in reducing stroke and heart failure and was superior to amlodipine in reducing heart failure</td>
</tr>
<tr>
<td>AASK§</td>
<td>N = 1,094 Nondiabetic African Americans with hypertensive renal disease, aged 18-70 y</td>
<td>Amlodipine arm was terminated by the data and safety monitoring board because ramipril was determined by have greater renoprotective effects than amlodipine, independent of blood pressure reduction†</td>
<td>Ramipril reduced clinical events by 46% compared with amlodipine, and reduced decline in kidney function to a significantly greater extent than amlodipine or metoprolol</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: AASK, African American Study of Kidney Disease and Hypertension; ALLHAT, Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial; GFR, glomerular filtration rate.

*ALLHAT participants with elevated cholesterol levels (n = 10,377) were co-enrolled in a randomized, open-label trial to compare pravastatin therapy with “usual care” in reducing all-cause death.

†ALLHAT trial data suggest that \(\alpha \)-adrenergic blockers should not be used as first-line agents in high-risk hypertensive patients.

‡ALLHAT trial data suggest that a thiazide diuretic should be a component of combination therapy in antihypertensive regimens.

§AASK trial data demonstrated that dihydropyridine calcium channel blockers (CCBs) are less renoprotective than angiotensin-converting enzyme inhibitors in the presence of mild-to-moderate renal insufficiency. This finding may not apply to nondihydropyridine CCBs.
including fewer strokes and less heart failure, and better blood pressure control than lisinopril, and the difference was greater in the African American and other black ALLHAT participants. Amlodipine and chlorthalidone had similar results in terms of these secondary outcomes, with the exception of a higher rate of heart failure with amlodipine. By the completion of the trial, after approximately 5 years of treatment, patients received an average of 2 antihypertensive medications to achieve blood pressures lower than 140/90 mm Hg.

Based on these results, ALLHAT has established that thiazide-type diuretics should be a component of nearly all antihypertensive regimens and further confirms the need for combination therapy in high-risk patients with hypertension. Unfortunately, owing to the trial’s design, it was not possible to note clinical outcomes for commonly used combination therapies, such as a diuretic in combination with an ACE inhibitor or CCB, or an ACE inhibitor in combination with a CCB. The ALLHAT data do not support a recommendation for the use of an ACE inhibitor as initial therapy in patients with diabetes without nephropathy. More data from this study will be forthcoming. Meanwhile, other clinical trial data and some current guidelines support the use of ACE inhibitor as initial therapy in patients with diabetes without nephropathy as well as in patients with nondiabetic renal disease, post-MI patients, and patients with heart failure.

Data also support the use of β-blockers in patients after MI infarction. Recent clinical trial data support initial therapy with an ARB for patients with type 2 diabetic nephropathy, heart failure, or high blood pressure and left ventricular hypertrophy (LVH) with or without diabetes. However, until better data are available for clinical outcomes for African Americans with high blood pressure, ACE inhibitors are preferred to ARBs, except in cases where patients exhibit ACE-inhibitor intolerance.

RAS-Blocking Agents. Data now clearly support the use of RAS-blocking agents in African Americans with renal disease, and there is also a strong rationale for their use in patients with LVH in the presence or absence of diabetes, and in diabetic nephropathy. The AASK trial evaluated the impact of treatment with an ACE inhibitor (ramipril), a β-blocker (metoprolol), and a CCB (amlodipine) on the progression of hypertensive kidney disease in African Americans with mild to moderate renal insufficiency. During the trial, the data and safety monitoring board determined that ramipril had greater renoprotective effects than amlodipine and terminated the amlodipine arm. The final results of AASK showed that ramipril reduced the decline in kidney function to a significantly greater extent than did metoprolol or amlodipine. Furthermore, ramipril reduced clinical events by 46% compared with amlodipine. Differences in blood pressure level did not account for the protective effects on renal function. These data provide strong evidence for including an ACE inhibitor in the antihypertensive regimen for African American patients with renal disease.

Angiotensin II receptor blockers, which inhibit the RAS by blocking the angiotensin II AT1 receptor site, have demonstrated blood pressure–lowering efficacy in African American patients, particularly when combined with hydrochlorothiazide. Recent trial evidence has shown that in patients with diabetic nephropathy, ARBs slow the rate of progression of nephropathy and proteinuria (irbesartan or losartan) and also blunt an increase in microalbuminuria in patients with early diabetic nephropathy (irbesartan). Thus, an ARB may be considered at least as effective as an ACE inhibitor in the treatment of all patients with diabetic nephropathy who have higher than goal blood pressure. The Losartan Intervention for Endpoint Reduction in Hypertension (LIFE) study included patients with high blood pressure and LVH (6% were African American) who were randomized to receive either the ARB losartan or the β-blocker atenolol for a mean of 4.8 years. Patients with LVH were selected because they had evidence of target-organ damage. There was little difference between the 2 groups in the degree of blood pressure reduction; however, losartan reduced the incidence of stroke by 25% more than did atenolol, and 25% fewer losartan-treated patients were diagnosed with new-onset diabetes during the course of the study. Losartan was also more effective than atenolol in reducing cardiovascular morbidity and mortality and all-cause mortality in the subpopulation of patients with high blood pressure, LVH, and diabetes. However, the benefit found in the above studies may not extend to the very small groups of African Americans included in these trials.

Because of the extensive data demonstrating their benefits in reducing cardiac events in patients with heart failure, ACE inhibitors are recommended for the African American population. Data from a recent trial also demonstrated a benefit for adding an ARB to the regimen of patients with heart failure. In this trial, valsartan significantly reduced signs and symptoms of heart failure and hospitalizations for heart failure compared with placebo. These benefits were seen when valsartan was added to an existing regimen except when the existing regimen included in these trials.
an ARB would be a reasonable alternative.

β-Blockers. β-Blockers comprise an integral component of recommended treatment for patients with stable and unstable angina\(^{130,131}\); thus, African American patients with hypertension and evidence of myocardial ischemia or acute coronary syndromes should receive treatment with β-blockers for short- and long-term management. Likewise, an ACE inhibitor plus a β-blocker should be considered in the regimen of patients at high risk for ischemic heart disease, such as those with diabetes or renal failure.\(^{132}\)

Studies have confirmed that all post-MI patients (including African Americans) who received β-blockers had a significantly lower mortality than post-MI patients who did not receive β-blockers.\(^{18}\) Furthermore, in a placebo-controlled study,\(^{19}\) the β-blocker carvedilol reduced the risk of worsening heart failure to a similar extent (by about 50%) in all groups studied, including African American subjects. Thus, unless otherwise contraindicated, a β-blocker should be considered as an option for post-MI patients or patients with heart failure. β-Blockers may have adverse effects when used in patients with reactive airway disease or depression.

Additional Risk Factors and Blood Pressure Goals

Signs of hypertensive target-organ damage may appear in the heart, blood vessels, kidneys, brain, or eyes, and patients with these signs have a poorer prognosis than patients with hypertension who lack signs of target-organ damage. Therefore, patients with diabetes, renal disease, heart failure, LVH, diastolic dysfunction, CHD, vascular diseases, microalbuminuria, transient ischemic attacks, or retinopathy (ie, signs of ongoing target-organ damage) should be considered high-risk patients. For example, data from the Framingham Heart Study\(^{133}\) have shown that patients with hypertension and LVH have a 5-fold increase in the risk of sudden death and a 3-fold increase in the risk for coronary artery disease compared with patients with hypertension characterized by similar blood pressure but without LVH. Data are not available to demonstrate that achieving a lower target blood pressure (<130/80 mm Hg) reduces cardiovascular mortality in these high-risk patients. Nonetheless, it is not unreasonable for providers to attempt to achieve lower blood pressure goals in all high-risk patients.

SUMMARY

A new approach is needed to reduce the adverse cardiovascular and renal outcomes associated with high blood pressure in African Americans. More traditional strategies for management of high blood pressure in African Americans—for example, accepting blood pressure levels above target goals, titrating to high-dose monotherapy, abandoning the use of low-dose diuretics, and avoiding RAS-blocking agents—have proven unsuccessful. The “best practice” strategies described in the present consensus statement are intended to achieve efficacy in blood pressure reduction in tandem with protection against target-organ damage (Table 11). These strategies involve assessing cardiovascular risk; setting, achieving, and maintaining an appropriate blood pressure target; assisting patients to implement therapeutic lifestyle changes; and administering effective pharmacologic interventions early and persistently.

The African American population is far from homogeneous, and each African American patient should be treated as an individual. Nonetheless, observational data suggest that African Americans are at higher risk than the general population for the negative consequences of hypertension. Therefore, the importance of treating high blood pressure to achieve the appropriate blood pressure goal can...

Table 11. Treatment Pearls: Management of High Blood Pressure in African Americans

- Compared with white Americans, African Americans are at greater risk for the development of high blood pressure, type 2 diabetes mellitus, coronary heart disease (CHD), heart failure, left ventricular hypertrophy, stroke, and end-stage renal disease. These facts suggest the need to obtain blood pressure measurements and assess risk for cardiovascular disease in African Americans at regular intervals across the life span in all primary care settings.
- Clinicians should make concerted efforts to increase awareness among African Americans of the links between lifestyle choices and cardiovascular and renal outcomes.
- Both high dietary sodium and low dietary potassium intake may contribute to excess high blood pressure in African Americans. Clinicians should recommend increasing dietary potassium while moderating sodium intake to the recommended <2.4 g/d.
- Obesity and inactivity are particularly prevalent among African American women and should be viewed as major cardiovascular risk factors in all African Americans.
- The Dietary Approaches to Stop Hypertension (DASH) diet was found to be particularly beneficial in lowering blood pressure in African Americans. Information about this diet is readily available and should be provided to patients.
- African Americans have a high prevalence of type 2 diabetes mellitus. Based on current National Cholesterol Education Program guidelines, patients with type 2 diabetes have a CHD risk that is equivalent to the risk for patients with CHD and require intensive interventions to lower low-density lipoprotein cholesterol levels to the goal of <100 mg/dL (<2.59 mmol/L).
- The perception that it is more medically difficult to lower blood pressure in African Americans than in other patients is unjustified.
- All antihypertensive drug classes are associated with blood pressure-lowering efficacy in African Americans, although combination therapy may frequently be required to achieve and maintain target blood pressure.
- As monotherapy, β-blockers and angiotensin-converting enzyme (ACE) inhibitors may produce less blood pressure-lowering effects in African Americans than in whites.
- Thiazide diuretics and calcium channel blockers may have greater blood pressure-lowering efficacy than do other classes in African Americans.
- Where compelling indications have been identified for prescribing specific classes of agents, such as β-blockers or renin-angiotensin system–blocking agents (ACE inhibitors or angiotensin II receptor blockers), these compelling indications should be applied equally to African American patients.
- When prescribing ACE inhibitors, it is important to note that compared with whites, African Americans appear to be at increased risk for ACE inhibitor–associated angioedema, cough, or both. All patients should be instructed to report any symptoms related to angioedema promptly.
not be overemphasized. A greater burden of cardiovascular risk requires that providers set lower blood pressure goals and embark on resolute efforts to achieve these goals. For patients with uncomplicated hypertension and nondiabetic renal insufficiency with proteinuria characterized by less than 1 g/d, the target blood pressure goal should be lower than 140/90 mm Hg at the highest. For patients at high risk for cardiovascular events—in particular, those with type 2 diabetes mellitus or renal insufficiency—the target blood pressure goal should be lower than 130/80 mm Hg.

To reach appropriate blood pressure levels, most African Americans will require combination antihypertensive therapy. When combination therapy using agents from 2 major drug classes is required to achieve target blood pressure goals, the following combinations may be considered effective: β-blocker/diuretic, ACE inhibitor/diuretic, ACE inhibitor/CCB, or ARB/diuretic.

There are now persuasive data to support the use of thiazide diuretics, β-blockers, RAS-blocking agents, and dihydropyridine CCBs in African Americans to reduce the risk of target-organ damage and adverse outcomes. Where compelling indications have been identified for prescribing β-blockers or RAS-blocking agents (either ACE inhibitors or ARBs) in certain groups of patients with hypertension, these indications should be applied equally to African American patients.

Accepted for publication September 16, 2002.

Financial support for this research was provided by the International Society on Hypertension in Blacks (ISHIB), Atlanta, Ga, and an unrestricted grant from Novartis International AG, Basel, Switzerland.

The HAAW Group first assembled for the purpose of defining the need for African American–specific guidelines for the management of high blood pressure at the 16th Annual International Interdisciplinary Conference on Hypertension and Related Risk Factors in Ethnic Populations, which took place July 8 through July 12, 2001, in Las Vegas, Nev, and was sponsored by ISHIB.

We acknowledge Advantage Communications, New York, NY, for editorial support during this process.

The following organizations have endorsed this consensus statement: the American Heart Association’s Council on High Blood Pressure Research, Dallas, Tex; the Association of Black Cardiologists Inc, Atlanta, Ga; the Consortium for Southeastern Hypertension Control, Winston-Salem, NC; and the National Medical Association, Washington, DC.

Corresponding author and reprints: Janice G. Douglas, MD, Case Western Reserve University, Department of Medicine, Room W–165, 10900 Euclid Ave, Cleveland, OH 44106 (e-mail: jgd3@po.cwru.edu).

REFERENCES

8. Berenson GS, Voors AW, Webber LS, D’Alferes ER Jr, Harsha DW. Racial differences of parameters associated with blood pressure levels in chil-
dren; the Bogalusa Heart Study. Metabolism. 1979;28:1218-1228.

50. Gerstein HC, Mann JF, Pogue J, et al., for the HOPE Study Investigators. Prevalence and determinants of microalbuminuria in high-risk diabetic and nondiabetic patients in the Heart Out...

102. Messeri FH, Dpari S, Feng Z. Comparison of ef-
ficacy and side effects of combination therapy of
angiotensin-converting enzyme inhibitor (ben-
azepril) with calcium antagonist (either nifedi-
pine or amlopidine) versus high-dose calcium
angiotensin monotherapy for systemic hyperten-
103. Frishman WH, Ram CV, McMahon FG, et al. for
the Benazepril/Amlodipine Study Group. Com-
parison of amlodipine and benazepril mono-
therapy to amlodipine plus benazepril in pa-
tients with systemic hypertension: a randomized,
double-blind, placebo-controlled, parallel-
1066.
104. Frishman WH, Bzyinski BS, Couchon LR, et al. A multifactorial trial design to assess combina-
tion therapy in hypertension: treatment with bis-
oprolol and hydrochlorothiazide. Arch Intern
105. Luscher TF, Waeber B. Efficacy and safety of vari-
cious combination therapies based on a calcium
antagonist in essential hypertension: results of a
placebo-controlled randomized trial. J Cardio-
106. McGill JB, Reilly PA. Telmisartan plus hydro-
chlorothiazide versus telmisartan or hydrochlo-
rothiazide monotherapy in patients with mild to
moderate hypertension: a multicenter, random-
ized, double-blind, placebo-controlled, parallel-
107. Glasser SP, Chrysant SG, Graves J, Rofman B,
Koehn DK. Safety and efficacy of amlodipine added
to hydrochlorothiazide therapy in essential hy-
108. Mogensen CE, Neldam S, Tikkanen I, et al. Ran-
timodal controlled trial of dual blockade of renin-
angiotensin system in patients with hyperten-
sion, microalbuminuria, and non-insulin depen-
dent diabetes: the candesartan and lisin-
opril microalbuminuria (CALM) study. BMJ.
therapy with benazepril and amlodipine in the
treatment of hypertension inadequately con-
trolled by an ACE inhibitor alone. J Cardiovasc
110. Sica DA. Rationale for fixed-dose combinations
in the treatment of hypertension: the cycle re-
111. Pool JL, Cushman WC, Saini RK, Nwachuku CE,
Battikha JP. Use of the factorial design and qua-
dratic response surface models to evaluate the
 fosinopril and hydrochlorothiazide combina-
tion therapy in hypertension. Am J Hypertens.
1997;10:117-123.
112. Kochar M, Guthrie R, Triscari J, Kisslmer-Taub K,
Reeves RA. Matrix study of irbesartan with hy-
drochlorothiazide in mild-to-moderate hyper-
113. SOLVD Investigators. Effect of enalapril on mor-
tality and the development of heart failure in
asymptomatic patients with reduced left ven-
327:685-691.
114. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The
effect of angiotensin converting enzyme inhibi-
329:1456-1462.
115. Cleland JG, Erhardt L, Murray G, Hall AS, Ball
SG. Effect of ramipril on morbidity and mode of
death among survivors of acute myocardial in-
farction with clinical evidence of heart failure: a
report from the AIRE Study Investigators. Eur
effects of the Fosinopril Versus Amlodipine Car-
diovascular Events Randomized Trial (FACET) in
patients with hypertension and NIDDM. Dia-
117. Estacio R, Jeffers BW, Hiatt WR, Biggerstaff SL,
Gifford N, Schipper RW. The effect of nisold-
pine as compared with enalapril on cardiovas-
cular outcomes in patients with non-insulin de-
118. Kober L, Torp-Pedersen C, Carlse JE, et al. for
the Trandolapril Cardiac Evaluation (TRACE)
Study Group. A clinical trial of the angiotensin-
converting-enzyme inhibitor trandolapril in pa-
tients with left ventricular dysfunction after myo-
1676.
119. Parving HI, Hommel E, Jensen BR, Hansen HP.
Long-term beneficial effect of ACE inhibition on
 diabetic nephropathy in normotensive type 1 dia-
120. Haywood LJ. Coronary heart disease mortality/
morbidity and risk in blacks, I: clinical manifes-
tations and diagnostic criteria: the experience with
the Beta Blocker Heart Attack Trial. Am Heart J.
121. Dahlöf B, Devereux RB, Kjeldsen SE, et al. Car-
diovascular morbidity and mortality in the Lo-
sartan Intervention For Endpoint reduction in hy-
pertension study (LIFE): a randomised trial
122. Lindholm H, Ibsen H, Dahlöf B, et al. Cardio-
vascular morbidity and mortality in patients with
diabetes in the Losartan Intervention For End-
point reduction in hypertension study (LIFE): a
randomised trial against atenolol. Lancet. 2002;
359:1004-1010.
123. Weir MR, Smith DHG, Neutel JM, Bedigan MP.
Valsartan alone or with a diuretic or ACE inhibi-	tor as treatment for African American hyperten-
2001;14:665-671.
124. Sica DA, Bakris GL. Type 2 diabetes: RENAAL and
IDNT—the emergence of new treatment options.
sensitivity to bradykinin among African Ameri-
cans. J Allergy Clin Immunol. 1996;98:283-
287.
126. Cohen EG, Soliman AM. Changing trends in an-
701-706.
127. Brown NJ, Ray WA, Snowden M, Griffin MR.
Black Americans have an increased rate of angiotensin
converting enzyme inhibitor-associated angioedema.
128. Elliott WJ. Higher incidence of discontinuation
of angiotensin converting enzyme inhibitors due to
1996;60:582-588.
129. Tenenbaum A, Grossman E, Shemes J, Fis-
man EZ, Nosrati I, Motro M. Intermediate but not
low doses of aspirin can suppress angiotensin-
converting enzyme inhibitor-induced cough. Am
AHA guidelines for the management of patients with
stable angina and non–ST-segment ele-
vation myocardial infarction: executive sum-
mary and recommendations: a report of the
American College of Cardiology/American Heart
Association Task Force on Practice Guidelines
(Committee on the Management of Patients with
Unstable Angina). Circulation. 2000;102:1193-
1209.
AHA/ACP-ASIM guidelines for the manage-
ment of patients with chronic stable angina:
executive summary and recommendations: a
report of the American College of Cardiology/
American Heart Association Task Force on Prac-
tice Guidelines (Committee on Management of
Patients with Chronic Stable Angina). Circula-
132. Smith SC Jr, Greenland P, Grundy SM, for the
American Heart Association. Beyond second-
ary prevention: identifying the high-risk patient
for primary prevention. Circulation. 2000;101:
111-116.
133. Levy D, Garrison RJ, Savage DD, Kannel WB,
Castelli WP. Prognostic implications of echo-
cardiographically determined left ventricular mass